Tuesday, February 4, 2020

Tratando a acondroplasia: o papel das estatinas no tratamento da acondroplasia

Estatinas restauram o crescimento ósseo em um modelo animal de acondroplasia

Como muitos de vocês devem saber, há alguns anos um grupo japonês publicou um
elegante trabalho  mostrando que as estatinas, uma família de medicamentos amplamente usada para reduzir os níveis de colesterol, foram capazes de restaurar o crescimento ósseo em um modelo animal de acondroplasia (1). No entanto, os pesquisadores não conseguiram elucidar como esses medicamentos estavam funcionando em seu modelo. Posteriormente, o grupo liderado por Pavel Krejci publicou um estudo no qual descartavam qualquer ação direta das estatinas nas vias do receptor do fator de crescimento de fibroblastos 3 (FGFR3) (2).

Agora, parece que o mecanismo pelo qual as estatinas poderiam restaurar ou promover o crescimento ósseo pode ter sido revelado, com a publicação de um novo estudo em que pesquisadores observaram que a fluvastatina, uma das estatinas, era capaz de aumentar a atividade de um eixo chave de enzimas que regulam positivamente o crescimento ósseo, a via IHH-PTHrP (IHH: Indian Hedgehog; PTHrP: peptídeo (ou proteína) relacionado ao hormônio da paratireóide) (3). Eu já havia revisto este estudo em detalhes em um artigo de outubro do ano passado.

Isso parece complicado mas, em resumo, o crescimento ósseo é o resultado de um processo celular dentro de estruturas chamadas placas de crescimento, localizadas nas extremidades dos ossos longos (Figura 1). Lá, os condrócitos (as células mestres do crescimento ósseo), reagindo a muitos agentes, passam de um estado de repouso a um frenesi de alta proliferação e, finalmente, aumentam várias vezes de volume (ou tamanho) (Figura 1), dando espaço a novo tecido ósseo. É o ciclo celular
contínuo de "despertar, proliferar, aumentar" do condrócito que alonga os ossos. Esse ciclo celular é fortemente regulado e a IHH e o FGFR3 são fundamentais para modular como os condrócitos se multiplicam e aumentam. O eixo IHH-PTHrP é especialmente importante no estágio de proliferação (4) e mutações no receptor PTHrP que prejudicam sua atividade normal causam uma displasia esquelética rara chamada displasia metafisária de Jansen (5), na qual os ossos estão severamente encurtados. Além disso, estudos anteriores mostraram que o FGFR3 reduz a atividade da via IHH-PTHrP (6) e que o PTH foi capaz de restaurar o crescimento em modelos de acondroplasia em camundongos (7,8).

Figura 1. Placa de crescimento.
 
 
Quando em estado normal, o FGFR3 inibe a proliferação e a hipertrofia dos condrócitos
por meio de algumas cascatas enzimáticas no interior dos condrócitos, as vias STAT1 e RAS-RAF-MEK-ERK (também chamada MAPK) (Figura 2 ), em um nível que permite o crescimento ósseo equilibrado. Na acondroplasia, devido à mutação em sua estrutura, o FGFR3 está trabalhando excessivamente, bloqueando bastante todo o processo de crescimento. Sob esse modelo, com a hiperatividade do FGFR3, menos condrócitos despertam do estado de repouso e menos proliferam e aumentam para permitir a construção de novo osso.

Figura 2. Vias ativadas pelo FGFR3 no condrócito.
Vias de sinalização ativadas por FGF/FGFR. FGFs induzem dimerização, ativação de quinase e transfosforilação de resíduos de tirosina de FGFRs, levando à ativação de vias de sinalização a jusante. Várias vias são estimuladas pela sinalização de FGF/FGFR, como as vias Ras-MAP quinase, PI-3 quinase/AKT e PLC-γ. Além disso, a sinalização de FGF também pode estimular a via STAT1/p21. A sinalização de FGF/FGFR também fosforila a proteína Shc e Src. FGF/FGFR desempenham papéis cruciais na regulação da proliferação, diferenciação e apoptose de condrócitos por vias de sinalização a jusante. De Su N et al. 2014. Reproduzido aqui apenas para fins educativos.
Estratégias terapêuticas atuais

Atualmente, existem quatro terapias para a acondroplasia em desenvolvimento clínico, explorando três estratégias diferentes. A mais avançada é um análogo do peptídeo natriurético do tipo C (CNP) chamado vosoritide (9). Outro análogo do CNP também está sendo testado (10). O CNP trabalha naturalmente contrabalançando os efeitos de uma das vias do FGFR3, chamada MAPK, que controla o ritmo da hipertrofia dos condrócitos, mas tem um efeito mínimo ou nulo na via do FGFR3 responsável por reduzir a proliferação dos condrócitos, de acordo com evidências publicadas até agora (11) (Figura 3). Existem vários artigos neste blog em que analisamos o CNP, basta visitar a página de índice para saber mais sobre ele.

Figura 3. Estratégias terapêuticas para acondroplasia.

A figura acima mostra os locais de ação do CNP, da meclizina e também dos inibidores de tirosina quinase (TKI) NF449 e A31, que funcionam como o infigratinib. De Matsushita M et al. (2013). Reproduzido aqui apenas para fins educacionais.

As outras duas estratégias visam diretamente o FGFR3, mas usando abordagens distintas. Um dos medicamentos, chamado recifercept, é de fato uma forma modificada de FGFR3 sem o gancho que normalmente ancora essa enzima na membrana celular dos condrócitos, permitindo que essa molécula circule livremente quando administrada (12). É por isso que é chamado de "receptor solúvel" (lembre-se de que o FGFR3 é uma enzima receptora). Então, como o recifercept funciona? Como você deve saber, o FGFR3 é um tipo de interruptor na parede dos condrócitos: ele precisa de um dedo (os FGFs, os ligantes) para ligar (ativar) e exercer suas funções (Figura 4). Ao circular livremente no corpo, o recifercept pode alcançar as placas de crescimento e capturar esses FGFs antes que eles ativem o FGFR3 (funciona fora da célula), explicando por que também é chamado de armadilha de ligantes (ligand trap, em inglês). A consequência é que, se o FGFR3 não estiver ativado, ele não poderá bloquear o ciclo celular do condrócito e o crescimento poderá ser restaurado (12). Aqui, você vê que o recifercept pode inibir todas as vias do FGFR3, portanto teria efeitos tanto nas fases de proliferação e hipertrofia dos condrócitos. Em teoria, seria mais potente que os análogos do CNP.


Figura 4. Armadilha de ligante.
 
Uma ilustração da estratégia de armadilha de ligantes. O interruptor na parede representa o FGFR3 e o dedo um ligante do FGFR (um FGF). O FGFR3 é ativado quando um FGF se liga a ele. A armadilha (decoy ou trap) é feita de uma forma "livre" de FGFR3, que compete com o interruptor da parede celular, impedindo sua ativação.

A terceira estratégia está sendo explorada com o infigratinib (13). Essa molécula é chamada inibidor da tirosina quinase (TKI) e é capaz de se ligar a parte do FGFR3 responsável por ativar suas vias no interior do condrócito (Figura 3). Nesse caso, o FGFR3 continua sendo ativado fora da célula pelos FGFs, mas é incapaz de ativar suas vias dentro da célula. Isso significa que o infigratinib pode ser mais potente que os análogos do CNP, também afetando as duas fases principais do ciclo celular dos condrócitos.


Como esses achados sobre as estatinas se encaixam no cenário terapêutico da acondroplasia?

À medida que nosso entendimento de como as estatinas funcionam na placa de crescimento está avançando, podemos pensar em uma estratégia em que combiná-las com os análogos do CNP possa resultar em um efeito aprimorado no crescimento ósseo. Esse conceito também é aplicável à meclizina, que também atua inibindo a mesma via MAPK que o CNP inibe (14) (Figura 3). Por um lado, o CNP (ou meclizina) trabalharia para restaurar a capacidade dos condrócitos aumentarem e amadurecerem (hipertrofia), enquanto as estatinas atuariam para restaurar a atividade do eixo IHH-PTHrP, o que, por sua vez, ajudaria os condrócitos a recuperar sua capacidade de proliferação. para uma melhor resposta global do crescimento ósseo.

No entanto, é claro que essa hipótese precisa ser testada em um modelo pré-clínico adequado como prova de conceito antes de qualquer etapa posterior. Por exemplo, alguém poderia pensar em um estudo com quatro braços: controle (placebo), somente CNP, somente estatina e CNP+estatina, o que permitiria aos pesquisadores determinar se haveria algum efeito sinérgico com essa combinação.

As terapias combinadas também podem permitir uma redução das doses necessárias para alcançar os efeitos desejados no crescimento ósseo de cada um dos agentes sendo testados, reduzindo assim os riscos de efeitos indesejados. Por exemplo, um risco conhecido associado aos TKIs contra FGFRs usados ​​no câncer é a hiperfosfatemia (15). Sabemos que a dose de infigratinib testada para acondroplasia é muito menor que a usada para o câncer (13), portanto o risco desse tipo de efeito colateral também seria menor, mas, e se a combinação com uma estatina pudesse reduzir ainda mais esse risco, permitindo uma dose ainda mais baixa do TKI?

Como eu disse acima, modelos apropriados devem ser testados quanto à segurança e eficácia antes que qualquer uma dessas idéias possa avançar, mas o objetivo aqui é compartilhá-las e inspirar pesquisadores interessados ​​em encontrar soluções para a acondroplasia e muitas outras displasias esqueléticas.

 
Se você segue este blog, é possível que você já saiba que as terapias para displasias relacionadas ao FGFR3 podem não apenas ser aplicáveis ​​a vários outros tipos de displasias ósseas nas quais o FGFR3 desempenha um papel no mecanismo da doença, mas também em outras não relacionadas ao FGFR3, também. Um exemplo vem do desenvolvedor do vosoritide, que iniciou um programa para algumas formas de baixa estatura idiopática (veja mais informações aqui e aqui; em inglês; esses links levarão a duas apresentações em pdf. Nelas, basta procurar por acondroplasia. A primeira tem mais detalhes). Outro exemplo vem de um estudo com infigratinib, no qual os pesquisadores descobriram que a inibição do FGFR3 teve efeitos positivos em dois modelos animais de displasias graves associadas a mutações no gene transportador de sulfato (SLC26A2), que também causam a displasia diastrófica (16).

As coisas estão melhorando e, embora resultados definitivos de todas as iniciativas em andamento e futuras ainda demorem alguns anos para serem disponibilizados, é reconfortante saber que, em um futuro não muito distante, muitas crianças serão poupadas de enfrentar as muitas complicações médicas que frequentemente ocorrem em displasias ósseas e terão melhor qualidade de vida.

ps. Você pode encontrar muito mais informações sobre todas as estratégias revisadas brevemente aqui em outros artigos do blog. Visite a página de índice.


Referências


1. Yamashita A et al. Statin treatment rescues FGFR3 skeletal dysplasia phenotypes. Nature 2014; 513 (7519):507-11.

2. Fafilek B et al. Statins do not inhibit the FGFR signaling in chondrocytes. Osteoarthritis Cartilage 2017; (9):1522-30.

3. Ishikawa M et al. The effects of fluvastatin on Indian Hedgehog pathway in endochondral ossification. Cartilage 2019; 22:1947603519862318. doi: 10.1177/1947603519862318. [Epub ahead of print]

4. Kronenberg HM. Developmental regulation of the growth plate. Nature 2003; 423 (6937):332-6.

5. Calvi LM, Schipani E. The PTH/PTHrP receptor in Jansen's metaphyseal chondrodysplasia. J Endocrinol Invest 2000;23(8):545-54.

6. Chen L et al. A Ser(365)-->Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates Ihh/PTHrP signals and causes severe achondroplasia. Hum Mol Genet 2001; 10(5):457-65.

7. Ueda K et al. PTH has the potential to rescue disturbed bone growth in achondroplasia. Bone 2007;41(1):13-8.

8. Xie Y et al. Intermittent PTH (1-34) injection rescues the retarded skeletal development and postnatal lethality of mice mimicking human achondroplasia and thanatophoric dysplasia. Hum Mol Genet 2012; 21(18):3941-55.

9. Savarirayan R et al. C-Type Natriuretic Peptide Analogue Therapy in Children with Achondroplasia. N Engl J Med 2019;381(1):25-35.

10. Breinholt VM et al. TransCon CNP, a Sustained-Release C-Type Natriuretic Peptide Prodrug, a Potentially Safe and Efficacious New Therapeutic Modality for the Treatment of Comorbidities Associated with Fibroblast Growth Factor Receptor 3-Related Skeletal Dysplasias. J Pharmacol Exp Ther 2019;370(3):459-71.

11. Lorget F et al. Evaluation of the therapeutic potential of a CNP analog in a Fgfr3 mouse model recapitulating achondroplasia. Am J Hum Genet 2012;91(6):1108-14.
Free access.

12. Garcia S et al. Postnatal soluble FGFR3 therapy rescues achondroplasia symptoms and restores bone growth in mice. Sci Transl Med 2013 Sep 18;5(203):203ra124. Free access.

13. Komla-Ebri D et al. Tyrosine kinase inhibitor NVP-BGJ398 functionally improves FGFR3-related dwarfism in mouse model. J Clin Invest 2016;126(5):1871-84. Free access.

14. Matsushita M et al. Meclozine facilitates proliferation and differentiation of chondrocytes by attenuating abnormally activated FGFR3 signaling in achondroplasia. PLoS One. 2013 Dec 4;8(12):e81569. Free access.15. Kelly CM et al. A phase Ib study of BGJ398, a pan-FGFR kinase inhibitor in combination with imatinib in patients with advanced gastrointestinal stromal tumor. Invest New Drugs 2019;37(2):282-90. Free access.

15. Nogova L et al. Evaluation of BGJ398, a Fibroblast Growth Factor Receptor 1-3 Kinase Inhibitor, in Patients With Advanced Solid Tumors Harboring Genetic Alterations in Fibroblast Growth Factor Receptors: Results of a Global Phase I, Dose-Escalation and Dose-Expansion Study. J Clin Oncol 2017;35(2):157-65. Free access.

16. Zheng C et al. Suppressing UPR-dependent overactivation of FGFR3 signaling ameliorates SLC26A2-deficient chondrodysplasias. EBioMedicine 2019;40:695-709. Free access. 

Monday, February 3, 2020

Treating achondroplasia: statins' role for the treatment of achondroplasia

Statins restore bone growth in an animal model of achondroplasia

As many of you may know, a few years ago a Japanese group published an elegant work showing that the statins, a family of drugs widely used to reduce cholesterol levels, were able to restore bone growth in an animal model of achondroplasia (1). However, the researchers were not able to find out how these medicines were working in their model.  Later, the group leaded by Pavel Krejci published a study in which they ruled out any direct action of statins on the fibroblast growth factor receptor 3 (FGFR3) pathways (2).

Now, it seems that the mechanism by which statins could restore or promote bone growth might have been unveiled, with the publication of a new study where researchers observed that fluvastatin, one of the statins, was able to increase the activity of a key enzyme axis that positively regulates bone growth, the IHH-PTHrP pathway (IHH:
Indian Hedgehog; PTHrP: peptide (or protein) related to Parathyroid Hormone) (3).I have already reviewed it in an article from October last year.

This sounds complicated but in summary, bone growth is a consequence of a cell process within structures called growth plates that are located in the extremities of the long bones (Figure 1). There, the chondrocytes (the master cells of bone growth), reacting to many agents, go from a resting state to a highly proliferation frenzy and finally enlarge several times from their baseline size (Figure 1), then giving space to new bone tissue. It is the continuous chondrocyte's "awake, proliferate, enlarge" cell cycle that elongate bones. This cell cycle is tightly regulated and both
IHH and FGFR3 are fundamental to modulate how chondrocytes multiply and enlarge. The IHH-PTHrP axis is specially important in the proliferation stage (4) and mutations in the PTHrP receptor that impair its normal activity cause a rare skeletal dysplasia called Jansen metaphyseal dysplasia (5) in which bones are severely shortened. Furthermore, previous studies showed that FGFR3 reduces the activity of the IHH-PTHrP pathway (6), and that PTH was able to restore growth in mouse models of achondroplasia (7,8). 

Figure 1. Cartilage growth plate.


  
In normal state, FGFR3 inhibits both chondrocytes' proliferation and hypertrophy to an extent that allows balanced bone growth through a couple of enzymatic cascades inside the chondrocyte, the STAT1 and the RAS-RAF-MEK-ERK (also called MAPK) pathways (Figure 2). In achondroplasia, due to the mutation in its structure, FGFR3 is working excessively, thus quite blocking the entire growth process. Under this model, upon the overactivity of FGFR3, fewer chondrocytes awake from the resting state and fewer will proliferate and enlarge to enable new bone to be built.

Figure 2. FGFR3 pathways.


Signaling pathways activated by FGF/FGFR. FGFs induce dimerization, kinase activation and transphosphorylation of tyrosine residues of FGFRs, leading to activation of downstream signaling pathways. Multiple pathways are stimulated by FGF/FGFR signaling such as Ras-MAP kinase, PI-3 kinase/AKT and PLC-γ pathways. Furthermore, FGF signaling can also stimulate STAT1/p21 pathway. FGF/FGFR signaling also phosphorylates the Shc and Src protein. FGF/FGFR play crucial roles in the regulation of proliferation, differentiation and apoptosis of chondrocytes via downstream signaling pathways. From Su N et al. 2014. Reproduced here for educational purposes only.


Current therapeutic strategies

Currently, there are four therapies for achondroplasia in clinical development exploring three different strategies. The most advanced one is an analogue of C-type natriuretic peptide (CNP) called vosoritide (9). Another CNP analogue is also being tested (10). CNP works naturally counteracting the effects of one of the FGFR3 pathways, called MAPK, which controls the pace of chondrocytes' hypertrophy, but it has minimum or no effect in the FGFR3 pathway responsible for reducing chondrocytes' proliferation, according to the evidence so far (11) (Figure 3). There are several articles in this blog where we review CNP, you just have to browse the index page to learn more about it.


Figure 3. Therapeutic strategies for achondroplasia.

The figure above shows the site of action of CNP, meclizine and also of the tyrosine kinase inhibitors (TKI) NF449 and A31, which work like infigratinib. From Matsushita M et al. (2013). Reproduced here for educational purposes only.

The other two strategies target FGFR3 directly, but using distinct approaches. One of the drugs, called recifercept, is in fact a modified form of FGFR3 lacking the hook which normally anchors this enzyme to the chondrocyte cell membrane, allowing this molecule to circulate freely when administered (12). That's why it is called a "soluble receptor" (remember that FGFR3 is a receptor enzyme). So, how does it work? As you may know, FGFR3 is a kind of power switch on the wall of the chondrocytes: it needs a finger (the FGFs, the ligands) to turn on (activate) and exerts its functions (Figure 4). By circulating freely in the body, recifercept can reach the growth plates and capture those FGFs before they engage FGFR3 (it works outside the cell), explaining why it is also called a ligand trap. The consequence is that if FGFR3 is not activated, then it cannot block the chondrocyte's cell cycle, and growth can be restored (12). Here, you see that recifercept might be able to inhibit all FGFR3 pathways, so would have effects both in the chondrocyte's proliferation and hipertrophy phases. In theory it would be more potent than CNP analogues.

Figure 4. Ligand trap.


An illustration of the ligand trap strategy. The switch on the wall represents FGFR3 and the finger a FGFR ligand (a FGF). FGFR3 is activated when a FGF binds to it. The trap is made of a "free" form of FGFR3 which competes with the cell wall switch, preventing its activation.


The third strategy is being explored with infigratinib (13). This molecule is called a tyrosine kinase inhibitor (TKI) and it is able to bind the part of FGFR3 which is responsible for activating its pathways inside the chondrocyte (Figure 3). In this case, FGFR3 keeps being activated outside the cell by the FGFs, but it is unable to turn on its pathways inside the cell. This means that infigratinib could be more potent than CNP analogues, also having effects on both key chondrocyte's phases of the cell cycle.


How do those findings about the statins fit in the achondroplasia's therapeutic landscape ? 

As our understanding of how statins work in the growth plate is advancing we could think on a strategy where combining them with CNP analogues may result in improved effect on bone growth. This concept is also applicable to meclizine, which also works inhibiting the same MAPK pathway CNP does (14) (Figure 3). By one side CNP (or meclizine) would work on restoring the ability of chondrocytes to enlarge and mature (hypertrophy) while statins would work restoring the activity of the IHH-PTHrP axis, which in turn would help chondrocytes to regain their proliferation capacity and leading to a better overall response on bone growth.

Nevertheless, it is clear that this hypothesis needs to be tested in an appropriate pre-clinical model as a proof of concept before any further step. For instance, one could think in a study with four arms: control (sham), CNP-only, statin-only and CNP-statin combo, which would allow researchers to determine if there were any sinergistic effects with that combination.

Combination therapies might also allow a reduction of doses needed to reach the desired effects on bone growth by each of the agents being tested, therefore reducing risks of undesired effects. For example, one known risk associated with TKIs against FGFRs used in cancer is hyperphosphatemia (15). We know that the dose of infigratinib tested for achondroplasia is far lower than those used for cancer (13) so the risk of this kind of side effect would be also lower, but what if the combination with a statin could reduce that risk even more, by allowing an even lower dose of the TKI?

As I said above, appropriate models must be tested for safety and efficacy before any of these ideas could be put in march, but the goal here is to share them and inspire researchers interested in finding solutions for achondroplasia and many other skeletal dysplasias. 

If you follow this blog it is possible that you already know that therapies for FGFR3-related dysplasias might not only be applicable for several other types of bone dysplasias where FGFR3 plays a role in the mechanism of disease, but also for other non FGFR3-related dysplasias as well. One example comes from the developer of vosoritide, which has started a program for some forms of idiopathic short stature (see more info here and here; these links will take you to two pdf presentations. You just have to browse them for achondroplasia. The first one has more details). Another example comes from a study with infigratinib in which the researchers found out that the inhibition of FGFR3 had positive effects in two animal models of severe dysplasias associated with mutations in the sulphate transporter gene, which is also the cause of diastrophic dysplasia (16).

Things are getting better, and although definitive results from all the ongoing and upcoming initiatives will still take a few years to become available, it is reassuring that  not in a distant future many children will be spared of enduring the many medical complications that often occur in bone dysplasias and will enjoy better quality-of-life.

ps. You can find much more information about all strategies briefly reviewed here in other articles of the blog. Try the index page. 



References

1. Yamashita A et al. Statin treatment rescues FGFR3 skeletal dysplasia phenotypes. Nature 2014; 513 (7519):507-11. 

2. Fafilek B et al. Statins do not inhibit the FGFR signaling in chondrocytes. Osteoarthritis Cartilage 2017; (9):1522-30.

3. Ishikawa M et al. The effects of fluvastatin on Indian Hedgehog pathway in endochondral ossification. Cartilage 2019; 22:1947603519862318. doi: 10.1177/1947603519862318. [Epub ahead of print] 

4. Kronenberg HM. Developmental regulation of the growth plate. Nature 2003; 423(6937):332-6.

5. Calvi LM, Schipani E. The PTH/PTHrP receptor in Jansen's metaphyseal chondrodysplasia. J Endocrinol Invest 2000;23(8):545-54.

6. Chen L et al. A Ser(365)-->Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates Ihh/PTHrP signals and causes severe achondroplasia. Hum Mol Genet 2001; 10(5):457-65.

7. Ueda K et al. PTH has the potential to rescue disturbed bone growth in achondroplasia. Bone 2007;41(1):13-8. 

8. Xie Y et al. Intermittent PTH (1-34) injection rescues the retarded skeletal development and postnatal lethality of mice mimicking human achondroplasia and thanatophoric dysplasia. Hum Mol Genet 2012; 21(18):3941-55.

9.
Savarirayan R et al. C-Type Natriuretic Peptide Analogue Therapy in Children with Achondroplasia. N Engl J Med. 2019;381(1):25-35.

10.
Breinholt VM et al. TransCon CNP, a Sustained-Release C-Type Natriuretic Peptide Prodrug, a Potentially Safe and Efficacious New Therapeutic Modality for the Treatment of Comorbidities Associated with Fibroblast Growth Factor Receptor 3-Related Skeletal Dysplasias. J Pharmacol Exp Ther 2019 Sep;370(3):459-71.

11. Lorget F et al. Evaluation of the therapeutic potential of a CNP analog in a Fgfr3 mouse model recapitulating achondroplasia. Am J Hum Genet. 2012;91(6):1108-14.
Free access. 

12. Garcia S et al. Postnatal soluble FGFR3 therapy rescues achondroplasia symptoms and restores bone growth in mice. Sci Transl Med. 2013 Sep 18;5(203):203ra124. Free access.

13. Komla-Ebri D et al. Tyrosine kinase inhibitor NVP-BGJ398 functionally improves FGFR3-related dwarfism in mouse model. J Clin Invest 2016;126(5):1871-84. Free access. 

14. Matsushita M et al. Meclozine facilitates proliferation and differentiation of chondrocytes by attenuating abnormally activated FGFR3 signaling in achondroplasia. PLoS One. 2013 Dec 4;8(12):e81569. Free access.15. Kelly CM et al. A phase Ib study of BGJ398, a pan-FGFR kinase inhibitor in combination with imatinib in patients with advanced gastrointestinal stromal tumor. Invest New Drugs 2019;37(2):282-90. Free access.
 
15.
Nogova L et al. Evaluation of BGJ398, a Fibroblast Growth Factor Receptor 1-3 Kinase Inhibitor, in Patients With Advanced Solid Tumors Harboring Genetic Alterations in Fibroblast Growth Factor Receptors: Results of a Global Phase I, Dose-Escalation and Dose-Expansion Study. J Clin Oncol 2017;35(2):157-65. Free access.

16. Zheng C et al. Suppressing UPR-dependent overactivation of FGFR3 signaling ameliorates SLC26A2-deficient chondrodysplasias. EBioMedicine 2019;40:695-709. Free access.








Wednesday, January 29, 2020

Tratando a acondroplasia: oito anos online

Feliz Ano Novo!

O blog Tratando a Acondroplasia está fazendo oito anos online e já recebeu mais de 380 mil visitas de mais de 160 países. Esta tem sido uma jornada e tanto. Novos visitantes podem não saber, mas tudo começou depois que passei algum tempo conversando com pesquisadores, experts e representantes de associações de pacientes em 2009 e 2010, tentando entender seus pontos de vista sobre a acondroplasia. Percebi que havia lacunas no conhecimento e uma espécie de desconexão entre a comunidade científica e os pais e famílias. Embora houvesse pesquisa sendo realizada naquele momento, a comunidade interessada tinha muito pouco acesso a ela, ou porque não era fácil filtrar as informações relevantes ou porque essas informações relevantes eram divulgadas em linguagem científica, não acessível a todos. Assim, o blog começou com a idéia de traduzir essa linguagem científica daqueles estudos em um texto que pudesse ajudar o leitor leigo a entender o que era acondroplasia e o que estava sendo feito para tentar corrigir o comprometimento do crescimento causado pela mutação no gene do receptor
de fator de crescimento de fibroblasto 3 (FGFR3).

Desde então, muitas estratégias terapêuticas foram exploradas, como você pode ver navegando na página de índice do blog. Algumas delas alcançaram o estágio de desenvolvimento clínico, e a mais avançada, o vosoritide, um análogo do peptídeo natriurético tipo C (CNP), está mais próximo de chegar ao mercado, de acordo com seu desenvolvedor, Biomarin.

Lembre-se de que você sempre pode procurar outros artigos do blog para obter informações mais detalhadas sobre a acondroplasia e os mecanismos de ação dos medicamentos que mencionamos brevemente aqui.

Então, vamos ver com mais detalhes o que aconteceu em 2019 com a pesquisa de terapias para a acondroplasia. Abaixo, você verá um breve resumo das quatro moléculas em teste no momento.

Vosoritide - Biomarin

O desenvolvedor anunciou recentemente seus planos de submeter os resultados do estudo de fase 3 com vosoritide ao FDA em 2020, esperando receber aprovação em 2021 para crianças acima de 6 anos. Eles também divulgaram mais dados sobre o estudo de extensão de longo prazo com os participantes do estudo da fase 2. No estudo da fase 3, descobrimos que, em comparação com o placebo, o vosoritide melhorou a velocidade de crescimento em 1,9 cm em um ano, em média. Os resultados do estudo de fase 2 revelaram que o efeito no crescimento parece ser sustentado ao longo dos anos. Além disso, eles também anunciaram que as duas primeiras coortes do estudo de fase 2 com bebês e crianças de até cinco anos de idade estão totalmente recrutadas e que a terceira coorte de bebês está em andamento no momento em que estou escrevendo este artigo. 


Para saber mais sobre o status e os planos do vosoritide, clique no link a seguir que o levará à apresentação
da Biomarin no evento do JP Morgan, ocorrido no início deste mês.

TransCon CNP - Ascendis Pharma

Seguindo os passos  da Biomarin, a Ascendis iniciou o recrutamento de voluntários para o estudo de história natural, que é um requisito para se inscrever no estudo de intervenção medicamentosa com seu próprio análogo do CNP. Parece que eles também conseguiram iniciar o recrutamento do estudo de fase 2 com o TransCon-CNP. No ano passado, eles também publicaram os resultados de seus estudos pré-clínicos e divulgaram informações sobre o estudo da fase 1 em voluntários saudáveis. A principal diferença entre o TransCon-CNP e o vosoritide é que ele foi projetado para ser administrado uma vez por semana em comparação com o produto da Biomarin, que é administrado em uma injeção diária. Os interessados ​​em participar dos ensaios da Ascendis podem visitar esses links para obter mais informações:


Recifercept (TA-46) - Pfizer

Therachon, o desenvolvedor original do TA-46, passou a bola para a Pfizer, após a divulgação dos resultados dos testes da fase 1. A molécula recebeu então o nome de recifercept. Este medicamento é chamado de "armadilha de ligante" e foi projetado para capturar os agentes que normalmente ativam o FGFR3 antes que possam ativar o receptor mutado. Se o FGFR3 permanecer inativo, o crescimento ósseo poderá ser restaurado. A Pfizer também iniciou o estudo de história natural que permitirá aos voluntários ingressar no estudo da fase 2 posteriormente. O link a seguir levará você a mais informações sobre o estudo de história natural:


Infigratinib (BGJ-398) - QED


O desenvolvedor do infigratinib, uma molécula projetada para bloquear as vias intracelulares dos FGFRs, também iniciou seu estudo de história natural. Não sei se eles já começaram o estudo de fase 2. Essa droga funcionaria "cortando" os fios que acionam as reações químicas desencadeadas pelo FGFR3, deixando os condrócitos retomar o processo de crescimento ósseo. Para saber mais sobre o estudo de história natural:




Mais novidades

Outras terapias experimentais foram reportadas recentemente, incluindo um terceiro análogo do CNP por um desenvolvedor japonês, mas elas ainda estão longe do desenvolvimento clínico. Outras perspectivas positivas vêm de estudos usando o CNP e outras drogas para modular as atividades do FGFR3 em displasias esqueléticas onde o FGFR3 não sofre mutação mas ainda desempenha um papel relevante no comprometimento do crescimento ósseo observado nesses distúrbios. Essas são notícias animadoras, uma vez que disponibilizar terapias para distúrbios como a displasia disastrófica e as RASopatias pode ajudar a melhorar a qualidade de vida de crianças afetadas por mutações nos respectivos genes causadores.

As coisas estão melhorando e esperamos assistir a mais novidades em 2020, trazendo novas esperanças e soluções para a acondroplasia e muitas outras displasias esqueléticas.

Tuesday, January 28, 2020

Treating Achondroplasia: eight years online

Happy New Year!


The Treating Achondroplasia blog is reaching eight years online and it has now received more than 380K visits from more than 160 countries. This has been quite a journey. New visitors may not know but it all started after I spent sometime talking with investigators, researchers and representatives from advocacy groups back in 2009 and 2010, trying to understand their points-of-view over achondroplasia. I realized that there were gaps on knowledge and a kind of disconnect between the scientific community and parents and families. Although there was research being pursued at that time, the interested community had very little access to it, either because it was not easy to filter the relevant information, or because that relevant information was delivered in hard jargon, not accessible to all. So, the blog started with the idea of translating the deep science language from those studies to a text that could help the lay reader to understand what was achondroplasia and what was being done to try to correct the growth impairment caused by the mutation in the fibroblast growth factor receptor 3 (FGFR3) gene.

Since that time, many therapeutic strategies have been explored, as you can see browsing the blog's index page. Some of them have been successfully moved to clinical development, and the more advanced one, vosoritide, a C-type natriuretic peptide (CNP) analogue, is closer to reach the market, according with its developer, Biomarin.

Remember that you can always browse other articles of the blog to get more detailed info about achondroplasia and the mechanisms of action of the drugs we briefly mention here.

So, let's see with more detail what happened in 2019 with the research for therapies for achondroplasia. Below you will see a brief summary of the four molecules under test right now.

Vosoritide - Biomarin

The developer recently announced their plans to submit the results of the phase 3 study with vosoritide to the FDA during 2020, expecting to receive approval in 2021 for children over 6 years old. They also released more data on the long term extension study with participants from the phase 2 study. From the phase 3 study we learned that compared to placebo, vosoritide improved growth velocity by 1.9 cm in one year on average. The results from the phase 2 study revealed that the effect on growth seems to be sustained throughout the years. Furthermore, they also announced that the first two cohorts of the phase 2 study with infants and toddlers, of children 5 year-old or less, are fully recruited, and that the third cohort in infants is in progress at the moment I am writing this text.

To learn more about Biomarin's vosoritide status and plans, click on the following link that will lead you to their presentation at the JP Morgan event earlier given earlier this month.

TransCon CNP - Ascendis Pharma

Following the steps of Biomarin, Ascendis started the recruitment of volunteers for their natural history study, which is a requirement to enroll in the drug intervention study with their own CNP analogue. It seems that they have been able to start the recruitment of their phase 2 study with TransCon-CNP as well. Last year, they have also published the results of their pre-clinical studies and released information about the phase 1 study in healthy volunteers.The main difference between this asset and vosoritide is that it has been designed to be given once a week compared with the Biomarin's product, which is given in a daily injection. Those interested in joining Ascendis' trials could visit these links for more information:

Recifercept (TA-46) - Pfizer

Therachon, the original developer of TA-46, passed the ball to Pfizer, after the release of their phase 1 trial results. The molecule was then named recifercept. This drug is called a "ligand trap" and it was designed to capture the agents that normally activate FGFR3 before they are able to activate the mutated receptor. If FGFR3 remains inactive then growth can be restored. Pfizer has also started the natural history study that will allow volunteers to join the phase 2 study later. The following link will take you to more information about their natural history study:

Infigratinib (BGJ-398) - QED

The developer of infigratinib, a molecule designed to block FGFRs' intracellular pathways, has also started their natural history study. I am not aware if they have started their phase 2 study yet. This drug would work by "cutting" the wires that drive the chemical reactions elicited by FGFR3, leaving the chondrocytes able to resume their growth process. To learn more about their natural history study:




More news

Other experimental therapies have been reported lately, including a third CNP analogue by a Japanese developer, but they are still far away from clinical development now. Other positive perspectives come from studies using CNP and other drugs to modulate FGFR3 activities in skeletal dysplasias where FGFR3 is not mutated but still plays a relevant role in the bone growth impairment seen in those disorders. These are reassuring news since making available therapies for disorders such as dyastrophic dysplasias and RASopathies may help improving the quality of life of children affected by mutations in the respective causative genes.

Things are only getting better and we hope we will watch more news during 2020 bringing new hope and solutions for achondroplasia and many other skeletal dysplasias.